Kapitel 5 - Dynamik-Analyse mit FEM-System MEANS V12

Es folgt eine Eigenwert-Berechnung einer 440 Hz-Stimmgabel mit deren Hilfe man heute Musikinstrumente nach dem Referenzton abstimmen kann oder sie werden auch in der HNO-Medizin für Hörtests eingesetzt.

Die Abmessungen und Materialdaten müssen zuerst von USA-Maßheinheiten auf metrische Maßheinheiten umgerechnet werden. Das Stimmgabel-Modell wird ohne Fuß und Verbindungsstück wie folgt in MEANS V11 erzeugt:

USA-Maßeiheiten

E-Modul = 200 000 N/mm² Poisson-Zahl = 0.29 Dichte = 7850 kg/m³ Wandstärke = 3.937 mm

Kreisbogen erzeugen

Starten Sie über das Desktop-Icon das Prgramm "MEANS V12 für

Directx11" und schalten mit der Registerkarte "Ansicht" und dem Dropdownmenü "Linien-Modus" den Linien-Modus ein. Es erscheint auf der rechten Seite ein neues Seitenmenü, wählen Sie hier "Kreisbogen erzeugen" und erzeugen folgende Kreise:

FEM-Analyse Ergebnisauswertung	Training	
Zoom 1. Gesamtansicht 👻	3. Linien-Modus Hintergrund Nodes 1. Elächen-Modus	
nien-Modus aktiviert	2. Knoten-Modus 3. Linien-Modus	J
	 Flächenmodell erzeugen Flächen ein- und ausblenden 	

Kreisbogen 1:

Mittelpunkt xm = 0, ym= 0, zm = 0 Radius = 8.09 Rasterung = 16 Anfangswinkel = 270 Endwinkel = 90

Kreisbogen 2:

Mittelpunkt xm = 0, ym = 0, zm = 0 Radius = 4.153Rasterung = 16Anfangswinkel = 270Endwinkel = 90

			💀 – 🗆 >
			Flächen Knoten Linien
🔛 Rechteck oder	Kreisbo — 🗆 🗙		Anzahl Eckknoten = 34
Kreisbogen Rechted	k		Knoten 🗸
		1/ 16 15	von: 1
Neu	REDO	12	bis: 34
Kreisbog	gen-Mittelpunkt:	K4	Knoten anzeigen
X-Koordinate:	0.00	73	Knotenbereich erzeuger
Y-Koordinate:	0.00	12	Knotenbereich erzeugen
T Noordinate.	0.00	34 33 32	Flächenknoten
Z-Koordinate:	0.00	31 11	Flächen-Randknoten
Aussen-Radius:	4.153	20	Knotenbereich löschen
Innen-Radius:	0	28 10	Knotenbereich löschen
Rastening:	16	27	Knotenbereich ändern
nuatorung.	10		Koordinaten-Faktor
Anfangswinkel:	270	20 9	Knoten: 1 EDI
Endwinkel:	90	25	X:
		24 8	Y:
Krei	isbogen erzeugen	23	Z:
		21 22 7	Knoten numerieren
		18 19 20	Elemente numerieren
	Cancel	6	Elementgruppen numerie
		5	Lastwerte anzeigen N
		4	Knoten-Size editieren:
		1 2 3	

Schalten Sie zusätzlich im Knoten-Modus die Knotennumerierung ein

Eingabe der 4 Einzelknoten

Geben Sie im Linien-Modus mit "Neu" und "Einzelknoten erzeugen" nacheinander die 4 Einzelknoten der linken Seite ein:

Knoten 35 = X = -75.17 Y = 8.09 Knoten 36 = X = -75.17 Y = 4.15 Knoten 37 = X = -75.17 Y = -4.15 Knoten 38 = X = -75.17 Y = -8.09

Linie verbinden

Wählen Sie im Linien-Modus das Menü "Linien erzeugen" und erzeugen die Linien indem Sie zuerst auf den Anfangsknoten und dannach auf den Endknoten klicken sowie Menü "Punkte mit Linie verbinden" wählen und folgende 6 Linien erzeugen:

Linie 17-35, Linie 35-36, Linie 36-34 sowie Linie 18-37, Linie 37-38, Linie 38-1

36 37 38	Linien –	17 T0 15 14 33133334009 10 10 10 10 10 10 10 10 10 10
	Anzahl Bementgruppen: 1 OK Anzahl Knoten: 38 OK Anzahl Bemente: 38 OK Bement löschen: OK	

2D-Netzgenerator mit Extrudierung

0

Wählen Sie im Linien-Modus "2D-Netzgenerator" mit einer Netzdichte von "200" sowie "3D-Modell extrudieren" mit Knoten in Z-Richtung von "7" und einer "Z-Objekthöhe von "3.931" um zuerst ein Dreiecknetz zu generieren sowie dannach ein 3D-Modell bestehend aus 11616 Pentaeder-Elementen und 8211 Knoten zu extrudieren.

	🖳 2D-Netzgei	nerator					—		×	
	vc El	on Elementgru; lementtyp: etzdichte:	ppe: 1	bis Ele	mentgruppe:	1				
	Fa	angradius:	.005							
] QUAD-Viere	cksnetz erzeugen							
		3D-Modell e	xtrudieren							
			Knoten in Z-Rich Z-Objekthöhe =	ntung = [7 3.931					
		Kr	ioten prüfen			Netzverfeineru	ng			
		Cancel	Help		FEM-NET	ZE GENERI	EREN			
ystem MEANS V12 - Strukturdatei C:\pr	rojekte\fachwerk\2dmesh.fem									- o ×
⑦ ? ⋈) = Datei Ansicht Netzgenerierun	ng FEM-Projekt bearbeiten FEM	I-Analyse Ergebnisauswertu	ng Training							
1. Statik • FEN	M-Solver wählen FEM-Ablauf ID Infos Strukturmodi	dell gen Ell rs FEM-Assistent rs								
										Rächen Knoten Linien
										Anzahl Surfaces = 6
										- Surface 2 - Surface 3 - Surface 4
										- Suface 5 - Suface 6
				www		wwww		VOR		
										Rächenmodell erzeugen Rächen sortieren/optimieren
					KKKK	CAN THE AND		HE WAR		Enzelne Flächen ausblenden
WADAAA		KKKKKK	RECERCICAL REPORTS	<u>HAAR</u> K					9 *	Einzeine Rächen einblenden Schnitte mit EGs erzeugen
										Alle wieder einblenden
										Netz aus Raechenmodel Rächenmodus beenden
Å.										
×										

Vierecksnetz erzeugen

Wählen Sie erneut im Linien-Modus "2D-Netzgenerator" und wählen diesmal nur "QUAD-Vierecksnetz erzeugen" um diesmal zuerst ein Dreiecksnetz zu generieren und dieses als Vorlage für eine QUAD-Vernetzung mit NETGEN zu verwenden.

🔜 2D-Netzgenerator	_	\times
von Elementgruppe: 1 bis Elementgruppe: 1		
Elementtyp: TRI3S ~		
Netzdichte: 300 V		
Fangradius: 5E-07		
QUAD-Vierecksnetz erzeugen		
3D-Modell extrudieren		
Knoten in Z-Richtung = 5		
Z-Objekthöhe =		
Knoten prüfen Netzverfeinen	ung	
Cancel Help FEM-NETZE GENER	IEREN	

Da generierte TRI3S-Dreiecksnetz wird jetzt als umgewandeltes STL-Modell in NETGEN dargestellt.

🖳 Quad	-Netze, Verf	einern, Lös	chen					-		\times
Vierecke	Verfeinem	Konverter	Extrudieren	Rotieren	Löschen	Drehen				
Quad-	Netze könne	n entweder r	nit einer STEF Quads mit ST	P-Datei ode EP-Datei g	r mit einem enerieren	Dreiecksn	etz erzeugi	t werden.		
			QUAD-Netz	mit NETGE	N generiere	en				
E	Bitte merken:	Exportieren sondern in d	Sie in Netgen as Debug/qua	die Datei te admesh-Ve	est.fem nich rzeichnis (n	nt in das De ur wenn Zi	ebug/mesh ugriffsrecht	n-Verzeich te eingeso	nnis chränkt sir	nd)

Stellen Sie im Netzgenerator die Netzdichte "very fine" ein und und generieren mit "Generate Mesh" ein Vierecksnetz mit 5124 Knoten und 5157 Quadelementen.

74 NETGEN - file.stl		
File Geometry Mesh View Refinement Special Help		
Quit Generate Mesh Stop	Mesh	Zoom All Center
y z	٩	letgen 4.9.11
Points: 5124 Elements: 0 Surf Elements: 5175		

Exportieren Sie mit Menü "File" und "Export Mesh" das FEM-Netz unter dem Namen "test.fem" in das voreingestellte Debug-Quadmesh-Verzeichnis damit es automatisch in MEANS V12 umgewandelt und importiert werden kann.

Nach der Modell-Überprüfung erhält man ein Vierecksnetz mit 6201 Knoten.

Hexaeder-Modell extrudieren

Wählen Sie die Registerkarte "Netzgenerierung" und das Menü "QUAD-Netze/Verfeinern, Löschen…" sowie das Register "Extrudieren"

1		10	()								FEM-System MEANS V1	1
	9	Datei	Ansichten	Netzgene	erierung	FEM-Proje	kt bearbeiten	FEM-Analyse	En	gebnisauswertung Training	g	
ſ			U				Quad-Netze,	Verfeinern, Lösche	en	Knoten-Überlagerungen Jacobi-Determinante testen	Netz aus Flächenmodell	
	3D-N	letzgenera	tor mit STEP, ST	L, IGES 🕞	2D-Net	zgenerator 🕞	Netze	e manipulieren	E,	Netze prüfen	🕞 🛛 Netze aus Flächenmodell 🕞	

um ein Hexaeder-Modell mit 39944 HEX8-Elementen und 43407 Knotenpunkten zu generieren. Verwenden Sie folgende Einstellung:

🤬 Vierecke/Verfeinern/Konverter/Extrudieren	
Dreiecke Vierecke Verfeinem Konverter Extrudier	ren Rotieren Löschen
Es wird ein Balken-, Dreiecks- oder	Vierecksnetz mit Z=0 benötigt.
Knoten in Z-Richtung =	7
Z-Objekthöhe =	3.931
Es kann mit dem 2D-Netz extrudiert werden:	Volumennetz aus HEX8 oder PEN6
	Schalennetz (benötigt für den Rand das Flächenmodell)
DXF UNDO	3D-FEM-Netz erzeugen Cancel

Randbedingungen erzeugen

Erzeugen Sie im Knoten-Modus folgender Knotenbereich und wählen Menü "Randbedingungen erzeugen" sowie die Selektion "einzelne Knoten anklicken" um die Stimmgabel mit 7 Knoten in X-, Y- und Z-Richtung einzuspannen.

Dynamik-Analyse

Wählen Sie die Registe "FEM-Analyse" und das Dropdownmenü "Dynamik" und berechnen mit folgender Einstellung 15 Eigenfrequenzen mit dem Quick-Solver.

Date Ansichten Netzgenerierung FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswertung Training Image: Statk Image		▶ 💟 🗧			FEM-Syste	em MEANS V11 - St	trukturdatei C:\Program F	Files\FEM-System_M	EANS_V11\F
2. Oynamik FEM-Solver wählen Infos zum FEM-Modell Modell-Abmessungen 1. Statik Oynamik Infos Strukturmodell rs FEM-Assistent rs 3. Beulen Seconstrisch Nichtlinear FEM-Analyse Dynamik — X 6. Konaktbedingungen Material-Nichtlinear FEM-Analyse Dynamik — X 7. Material-Nichtlinear Formoptimierung FEM-Analyse Dynamik — X 8. Formoptimierung Frmüdungsanalyse (AD-Merkblatt S2) Fendaler Bigerfrequenzen: 15 9. Ermüdungsanalyse (AD-Merkblatt S2) Reade in assimation fera VEIM-System_MEANS_V11NEM-Projects/Dynamic/tunning.fork 9. Ermüdungsanalyse (AD-Merkblatt S2) Reade in assimation fera VEIM-System MEANS_V11NEM-Projects/Dynamic/tunning.fork 9. Ermüdungsanalyse (AD-Merkblatt S2) Reade in assimation fera VEIM-System MEANS_V11NEM-Projects/Dynamic/tunning.fork 9. Ermüdungsanalyse (AD-Merkblatt S2) Reade in assimation feraveten Sufer: 5 9. Ermüdungsanalyse (AD-Merkblatt S2) Reade in assimation feraveten Sufer: 5 9. Schritt 2: Elgenformen und Spannungen Schritt 2: Elgenformen und Spannungen Schritt 2: Elgenformen ausweten	Datei	Ansichten	Netzgenerierung	FEM-Projekt b	earbeiten	FEM-Analyse	Ergebnisauswertung	Training	
Einstellungen Beenden		 Dynamik Statik Dynamik Temperatur Beulen Geometrisch N Kontaktbeding Material-Nicht Formoptimieru Ermüdungsana Behälterbau-Ar 	ichtlinear ungen linear ng lyse (AD-Merkblatt S2 ialysetool	r wählen	Infos zum Modell-A Infos Str	FEM-Modell bmessungen ukturmodell IS M-Analyse Dynam ivProgram Files\FEM Eingabe für das Sim Anzahl der kleir Anzahl der kleir Anzahl der kleir Anzahl der tkea Anzahl der tkea Select Solver O MEANS-: © Quick-So Si Einste	FEM-Assistent IS FEM-Assistent IS ik I-System_MEANS_V11\FEM ultane Eigenwertproblem inten Eigenfrequenzen:	A-Projects\Dynamic\tur 15 10 5 10 5 10 15 10 15 10 15 10 15 10 10 15 10 10 10 10 10 10 10 10 10 10	× nning_fork.

Eigenwertberechnung mit dem schnellen Quicksolver durchführen:

INP-Interface for FE-So	lvers	
Normal Precision	 C3D8 (8-node linear isoparametric element) show C3D4 and solve intern with a refining mesh of 8 x C3D4 C3D20 (20-node quadric isoparametric element) 	
Path for INP-Solver:	$D: \label{eq:program Files} FEM-System_MEANS_V10\Debug\inpsolver\inpsolver\2bit.e$	Browser
Path for INP Files:	C:\projekte\stimmgabel\hex88.INP	
	Select Solver In-Core-Solver Out-of-Core-Solver	
	Start FEM-Solver with INP-Interface	
	Settings Help + Infos Cancel	

Ergebnisvergleich

Die mit verschiedenen Netzen und Elementtypen berechneten Eigenfrequenzen werden mit den Eigenfrequenzen des FEM-Systems LS-DYNA verglichen. Der Ergebnisvergleich zeigt gute Übereinstimmung mit fast allen Elementtypen. Die größten Abweichungen treten beim linearen Tetraederelement TET4 auf. Wird das gleiche TET4-Netz aber mit dem von HTA-Software entwickelten TET4X8 berechnet, dann verbessern sich die Ergebnisse über 30%.

Eigenfrequenz Nr. 4 = 449 Hz (erste Biegeschwingung)

Eigenfrequenz Nr. 8 = 2817 Hz (zweite Biegeschwingung)

Eigenfrequenz Nr. 12 = 7382 Hz (dritte Biegeschwingung)

Eigenfrequenz Nr. 13 = 8398 Hz (Torsionsschwingung)

