FEM-System *MEANS V12*

Nichtlineare FEM-Analyse einer Zugprobe mit Vergleich der Zugkraft zwischen Stahl und Aluminium

www.femcad.de

www.fem-infos.com

Kapitel 12: Nichtlineare Analyse einer Zugprobe

Zugprüfkörper

Der Zugprüfkörper ist aus Stahl mit den Abmessungen 110 x 14 x 3 und wird beidseitig mit einer axialen Zugbelastung von 5000 N belastet. Die Belastung wird schrittweise über die Dehngrenze $R_{0.2}$, Streckgrenze R_e und Zugfestigkeit R_m bis zur Fließgrenze und schließlich zur Bruchdehnung erhöht.

Bis zur Fließgrenze bleibt das Metall elastisch und nimmt wieder die ursprüngliche Form ein, wenn man die Belastung zurücknimmt. Wird die belastende Spannung im Material jedoch größer, dann beginnt es, zu »fließen«, d. h. sich bleibend zu verformen. Schließlich bricht es.

Linienmodell erzeugen

Mit MEANS V11 wird zuerst das Register "Ansicht" und "Linien-Modus" gewählt ein Liniemodell mit 6 Knoten und 6 Linien einzugeben.

- E									
Ansicht	Netzgenerierun	g FEM-Projekt bea	beiten FE	M-Analyse	Ergebnisauswertun	9	Training		
 ohne Netz mit Netz 	○ Drahtgitter ✓ mit Kanten	Schattierung: 10% + Hidden-Line neu aktueller Knoten 12: X-	300 [Koord.= 36.5	1. Hauptansicht 418; Y-Koord.= 3	34.12766; Z-Koorc	3. 1. 2. 3.	Linien-Modus Flächen-Modus Knoten-Modus Linien-Modus	Trackball	<pre>Solution </pre>

Während der Eingabe kann zwischen Knoten- und Linien-Modus gewechselt werden.

Flächen Knoten Linien	Flächen Knoten Linien
Anzahl Eckknoten = 120	Knoten: 0 Neu
Knoten 🗸	X: 0
von: 1	Y: 0
bis: 120	Z: 0
Knoten anzeigen	Knoten erzeugen
Knotenbereich erzeugen	Einzelknoten erzeugen
Knotenbereich erzeugen	Linien erzeugen
Flächenknoten	Rechteck / Kreis
Flächen-Randknoten	Knoten manipulieren
Knotenbereich löschen	Knotenbereich kopieren
Knotenbereich löschen	Knoten vereinen
Knotenbereich ändern Koordinaten-Faktor	Knoten prüfen
hooremator reactor	
Knoten: 12 EDIT	Netzgeneratoren
X: 36.5418	2D-Netzgenerator
Y: 34.12766	3D-Netzgitter
Z: 0	
	EG= 2 V Neu
	DXF-Linien einladen
Elementgruppen numeneren	Linie verfeinem
Knoten-Size editieren:	
Größe= .01	UNDO / REDO
Size= normal 🗸	Linice Made have been
	Linieh-wodus beendeh

Linienmodell mit 16 Knotenpunkten:

Wählen Sie im Linien-Modus das Menü "Neu" um den Knoten 1 zu erzeugen und geben die Knotenkoordinaten X = 0, Y = 0, Z = 0 ein. Dannach wählen Sie Menü "Einzelknoten erzeugen" um den Knoten 1 in das FEM-Netz zu addieren.

Wiederholen Sie die Eingabe bis zum letzten Knoten:

Wählen Sie im Linien-Modus das Menü "Neu" um den Knoten 16 zu erzeugen und geben die Knotenkoordinaten X = 0, Y = 14, Z = 0 ein. Dannach wählen Sie Menü "Einzelknoten erzeugen" um den Knoten 16 in das FEM-Netz zu addieren.

Nach der Eingabe werden alle 16 Knotenpunkte numeriert dargestellt:

und mit "Knoten-Size editieren" und "Größe=0.02" vergrößert:

Linien erzeugen

Verbinden Sie im Linien-Modus mit Menü "Linien verbinden" nun alle Knoten zu einer Außenlinie.

Netzgenerierung

Sichern Sie nun das Linienmodell unter einem beliebigen Namen und wählen Menü "2D-Netzgenerator" um ein Netz mit dem Elementtyp "TRI3S" und einer Netzdichte von "300" zu generieren.

🔡 2D-Netzgenerator	-	×
von Elementgruppe: 1 bis Elementgruppe: 1		
Elementtyp: TRI3S ->2D-Scheibe linear ->		
Netzdichte: 300 V		
Fangradius: 5E-06		
QUAD-Vierecksnetz erzeugen		
3D-Modell extrudieren		
Knoten in Z-Richtung = 5		
Z-Objekthöhe =		
Knoten prüfen Netzverfeinen	ing	
Cancel Help FEM-NETZE GENER	IEREN	

Wählen Sie die Ansicht "Von Vorne" damit das 2D-Netz in der XY-Ebene zu sehen ist, dannach wählen Sie das Register "FEM-Projekt bearbeiten" und "Elementgruppen" um der Elementgruppe eine beliebge Farbe z.B. Gelb zu geben.

Nach der 2D-Netzgenerierung erhält man ein FEM-Netz bestehend aus 2955 TRI3S-Scheibenelementen und 1596 Knotenpunkten

R FDA System MEANS V11 - Struktudetic (Clyreighte) zugwenucht/dameh./em	- ø ×
I. Statk FM-Statk Hols zum FEM-Modell Image: Statk statk Model - Model - Model FEM-Analyse TRM-Abady TRM-Abady Image: Statk statk statk Model - Model - Model	
ten ynwyse y tein Power o'r med anwaennoder y tein Aanon y	
Ă. In the second s	
x x	

Verfeinerung

Verfeinern Sie das Linienmodell indem Sie in der Mitte bei X= 55, Y=5, Z=0 mit der Breite=2 und der Höhe =4 ein Rechteck mit der Elementgruppe 2 einfügen.

🖳 Rechteck oder K	reisbo —	×
Kreisbogen Rechteck		
Neu	REDO	
Aktuelle Elementgru	ippe: 2	
Rechted	k-Startpunkt:	
X-Koordinate:	55	
Y-Koordinate:	5	
Z-Koordinate:	0.00	
Breite:	2	
Höhe:	4	
Rech	nteck erzeugen	
	Cancel	

WählenSie im 2D-Netzgenerator "Netzverfeinerung" und geben folgende 2 Zeilen ein.

🔡 Re	efine Mesh					—
	No.	Main Group	Subgroup	Refine	Holes	Mesh Density
•	1	1	0	0	0	0
	2	2	1	1	0	0

Wiederholen Sie die Netzgenerierung mit diesem erweiterten Linienmodell

🛱 FEM-System MEANS V11 - Struk	turdatei C:\projekte\zugversuch	\linienmodell_zugprobe.fem				- o ×
Datei Ansicht N	letzgenerierung FEM-Projek	ct bearbeiten FEM-Analyse Erg	ebnisauswertung Training			
		Quad-Netze, Verfeinern, Löschen	Knoten-Überlagerung Jacobi-Determinante testen	Netz aus Flächenmodell Behälter-Netzgenerator Kugel-Netzgenerator Wälzlager-Netzgenerator		
3D-Netzgenerator mit STEP, STL,	IGES IS 2D-Netzgenerator I	🖓 Netze manipulieren 🖓	Netze prüfen 🕞	Spezielle Netzgeneratoren 🖓		
						🗑 – 🗆 🗙
						Rächen Knoten Linien
						Anzahl Eckknoten = 1631
						Knoten ~
						von: 1
						bis: 1631
						Knoten anzeigen
						Knotenbereich erzeugen Knotenbereich erzeugen
						Bächenknoten
						Rächen-Randknoten
						Knotenbereich löschen
						Knotenbereich löschen
						Knotenbereich ändern Koordinaten-Faktor
			\sim		/	
						Knoten: 20 EDIT
						X: 55
						7: 9
						2.0
			_			
					<u></u>	Bementgruppen numerieren
						Lastwerte anzeigen N
						Kosten-Ste editeren
						Größen 01
						Sizes normal v
Y						-
Á I						
1						
· · · · · · · · · · · · · · · · · · ·	(

und man erhält im FEM-Netz eine Knotenreihe bei X=55 für die X-Randbedingungen.

Eingabe der Zugbelastung

Die Zuglast von 5000 N wird zuerst in eine Linienlast 5000 N / 14 mm = 357.14 N/m umgerechnet damit eine gleichmäßige Kraftverteilung auf beiden Seiten erreicht wird.

Eingabe der Linienlast mit einem Knotenbereich

Erzeugen Sie zuerst im Knoten-Modus einen Knotenbereich indem Sie ein Rechteck mit gedrückter linker Maustaste über den linken Seitenrand aufspannen und loslassen., dann wählen Sie Register "FEM-Projekt bearbeiten" und "Linienbelastung"

Ansicht Netzgenerierung FEM-Projekt be ohne Netz O Drahtgitter Schattierung: 10%	bearbeiten FEM-Analyse Ergebnisauswertung Training	ackball
🔾 mit Netz 🗹 mit Kanten Hidden-Line neu		xis Cross
	Rain Arabi Knotenbereich erzeugen - X Btte mit der Maus ein Rechteck aufspannen oder einzelner Knoten anklicken! Anzahl Knotenbereich = 10 Neu Selection © Rechteck aufspannen (Knoten picken Cancel Knotenbereich erzeugen Kr	I - X chen Knoten Linien nzahl Eckknoten 6278 Kanten Von: 1 isi: 243 Knoten anzeigen Knoten anzeigen Knotenbereich erzeugen Rachen-Randknoten Rachen-Randknoten Knotenbereich löschen Knoten numerieren Bemente numerieren Bementgruppen numerieren Bementgruppen numerieren Lastwerte anzeigen N Knoten-Size editieren: Größe = Size = normal

Geben Sie Lastfall 1 ein mit dem Lastwert "-357.14" in "X-Richtung" mit der Selektion "alle angezeigten Knoten" und wählen "Belastung erzeugen".

Achenbeastung Ach	 2. Linienbela 1. Knotenbel 2. Linienbel	stung astung	1. Randber	dingungen ingungen dars Knoten-N	v tellen Eler Modus aktivier	nentgruppen t	Materialdaten	Editor	8. Löschen	T
-277.78 Image: Concentration of the second of the seco	 Flachenbi Gravitatic Fliehkraft Temperat Ungleicht Lastfall ei Editor 	eiastung belastung urbelastung mäßige Radiallast nstellen							Rächen Knoten Anzahl Eckknote	Linien n = 6278
-277.78 Freiheitsgrad: ● X-Richtung ○ Z-Richtung Richen-Randknoten -555.55 ● ● ○ Y-Richtung Knotenbereich löschen Knotenbereich löschen -555.55 ● ● ○ Y-Richtung Cachsen-Farben: SCHWARZ: X-Achse; BLAU; Y-Achse; ROT: Z-Achse) Flächen-Randknoten -555.55 ● ● ● Plächenmodus ● Rechteck aufspannen ● Knotenbereich dischen -555.55 ● ● ● einzelne Knoten anklicken ● alle angezeigten Knoten Knoteniasten darstellen: .0004 nomal ×: 0 ?: 0 <td< td=""><td></td><td></td><td>Akt Anz We</td><td>inienlast erzeug ueller Lastfall: tahl Lastwerte: rt der Linienlast: ungleich entlar</td><td>gen 1 10 -357.14 mg Z-Achse W2</td><td>- + Neu (Ein</td><td>— □</td><td>×</td><td>von: 1 bis: 243 Knoten ar Knotenbereid Richenker</td><td>h erzeugen knoten</td></td<>			Akt Anz We	inienlast erzeug ueller Lastfall: tahl Lastwerte: rt der Linienlast: ungleich entlar	gen 1 10 -357.14 mg Z-Achse W2	- + Neu (Ein	— □	×	von: 1 bis: 243 Knoten ar Knotenbereid Richenker	h erzeugen knoten
-555.55 Mathematric Motern anklicken () alle angezeigten Knoten -555.55 Mathematric Motern anklicken () alle angezeigten Surfaces -555.55 Mathematric Motern anklicken () alle angezeigten Surfaces -555.55 Mathematric Motern anstellen: () 0004 () normal () -2777.78 Mathematric Motern anstellen: () 0004 () normal () Cancel Editor Belastung löschen () Elementgruppen numerieren Elementgruppen numerieren () Elementgruppen numerieren Elementgruppen numerieren () Elementgruppen numerieren () Elementgruppe	277.78 H	Ξ	(Ach: Sele	heitsgrad: sen-Farben: SCHV ktion: Flächenmodus	X-Richtung Y-Richtung WARZ: X-Achse;	O Z-Ri BLAU: Y-Achse; F	ichtung ROT: Z-Achse) k aufspannen		Flächen-Rai Knotenbereic Knotenbereic Knotenberei Knotenberei	ndknoten sh <i>löschen</i> sch löschen ich ändern n-Faktor
Cancel Editor Belastung erzeugen	555.55		Knot	einzelne Knoter Koordinatenber enlasten darstell	n anklicken reich definieren len: .0004	alle ange alle ange nom	ezeigten Knoten ezeigten Surfaces nal v		Knoten: 1 X: 0 Y: 0 Z: 0 Moten nume 0	EDI1
				Cancel	Editor	Belast	ing erzeugen ung löschen]	Elemente nur Elementgrupp Lastwerte an Knoten-Size edi	merieren oen numerier zeigen N tieren:

Erzeugen Sie auf der rechten Seite ebenfalls die gleiche Linienlast jedoch mit dem Lastwert "357.14". Lastfall 1 besteht nun aus 19 Knotenlasten.

-277.78 -565.55 -55	312.50 N 625.00 N 625.00 N 625.00 N 625.00 N 625.00 N
-555.55	625.00 N
-555.55	625.00 N 625.00 N
-277.78 🛏	312.50 N

Randbedingungen erzeugen

Damit sich die Zugprobe gleichmäßig nach links und rechts verformen kann werden die Knotenpunkte der Linienlast in Y-Richtung sowie in der Probenmitte die Knoten bei X= 55 in X-Richtung gesperrt.

Im Knoten-Modus und "Belastungen" zuerst die Knotenpunkte der Belastungen als Knotenbereich darstellen,

	_		\times				
Flächen	Knoten	Linien					
Anzahl	Eckknoter	n = <mark>6</mark> 278	3				
Belas	tung		~				
von:	von: 1						
bis:	19]				
	Knoten anzeigen						

dann mit Register "FEM-Projekt bearbeiten" und "Randbedingungen" mit der Selektion "alle angezeigten Knoten" die Knoten in Y-Richtung sperren.

💀 Randbedingungen – D	ב	\times
Anzahl Randbedingungen aktuell: 41 Neu		
Wert der Randbedingung: 1E-10		
Freiheitsgrad sperren:		
in X-Richtung in Z-Richtung		
🗹 in Y-Richtung 📃 Einspannung		
(Achsen-Farben: SCHWARZ: X-Achse; BLAU: Y-Achse; ROT: Z-Achse)		
Selectieren		
O Rächenmodus O Rechteck aufspannen		
◯ einzelne Knoten anklicken		
O Koordinatenbereich definieren O alle angezeigten Surfaces wählen		
Randbedingungen darstellen: .00034 normal ~		
Cancel Editor RBs erzeugen		
RBs löschen		

Die Randbedingungen in X-Richtung bei X=55 kann man am einfachsten mit der Selektion "Koordinatenbereich definieren" erzeugen.

🖳 Koordi	natenbereich	_	
von X:	55	bis X:	55
von Y:	0	bis Y:	14
von Z:	0	bis Z:	0
	RBs erze	eugen	

FEM-Netz mit Belastungen und Randbedingungen

FEM-System MEANS V11 - Strukturdatei CAprojektelzugversuch\tri32.fem		- 0 ×
Datei Ansicht Netzgenerierung FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswertung T	raining	
Hidden-Line O mit Netz D mit Kanten Hidden-Line neu Infozeile	eten-Modus Zoom 0.1 - Trackball Axis Cross	
	E	
×		

Materialdaten eingeben

Wählen Sie das Register "FEM-Projekt bearbeiten" und "Materialdaten" um den E-Modul und die Poisson-Zahl für Stahl einzugeben. Ebenfalls müssen hier noch die drei Wandstärken $H_{1,2,3}$ = 3 mm für das dreieckige TRI3S-Scheibenmodell eingegeben werden.

	Bezeichnung	Materialwerte				
•	H1	3				
	H2	3				
	H3	3				
	E-Modul	210000				
	Poisson-Zahl	.3				
	Dichte	0				
	Manual and Science	0				
	waemekoemzient	0				
•	waemekoemzient	0			L	
*	ementgruppe: 1	Elementtyp: TRI	35	۲.	,	•
* E/	ementgruppe: 1	Elementtyp: TRIG	35 op	<	,	

Lineare Statik-Analyse

Sichern Sie jetzt das Modell mit Register "Datei" und "Sichern" unter einem Namen in das Projekt-Verzeichnis ab und wählen Register "FEM-Analyse" und "Statik" um die Verformungen und Spannungen mit dem MEANS-Solver oder Quick-Solver zu berechnen.

💀 FEM-Analyse	- 🗆 X
C:\projekte\Aufhaengung\trix3.fem Select Solver	uick-Solver
Schritt 1: FEM-Solver star	ten
Schritt 2: Postprocessing sta	arten
Schritt 3: Nachverfeineru	ng
FEM-Solver auswählen Erg	ebnisgrößen einstellen
Cancel	

Postprocessing

Wählen Sie das Register "Ergebnisauswertung" und das Icon wie um die Verformungen und Spannungen für die lineare Statikberechnung darzustellen.

Max. Verformungen in X-Richtung

Die maximalen Verformungen in X-Richtung betragen -0.0363 mm

C ? M =	Netzge	nerierung FEM-Proje	ekt bearbeiten FEM-	Analyse Ergebnisau	wertung Training				
Ergebnisse dan	stellen	Verformungsfaktor Knotenwerte picken Skalieren/Anzeigen TV	Legende 1 -	Value-Animation -	FEM-Strukturdatei STA-Ergebnisdatei Dateien listen	Ermüdungsnachweis -			
LASTFALL= 1									
Verformungen									
0.0350									
0.0257									
0.0153									
0.0050									
-0.0053									
-0.0157									
-0.0260									
-0.0363									
Bearbeiten - +									
ľ.	×								

Max. v.Mises-Knotenspannungen

Die v.Mises-Knotenspannungen in der Mitte betragen 167 MPa

Eingabe eines Lastbereiches

Es folgt eine nichtlineare FEM-Analyse indem die Zugprobe von 5000 N bis 25000 N schrittweise höher belastet werden soll. Geben Sie nun diesen Lastbereich ein indem Sie das Register "FEM-Projekt bearbeiten" und "Belastungen" wählen.

Im Editor wählen Sie "Lastfälle addieren und kopieren" und kopieren Lastfall 1 auf die neuen Lastfälle von 2 bis 20 mit der Option "Jeder Lastfall um 20% höher als der Vorige".

dbedi bedir	ingungen 🔹	en Elementgrup	pen Materialdaten	Editor	. Belastungen
	Info	zeile			2. Elementknoten
•	Belastungen			— C	3. Knotenkoordinaten 4. Materialdaten
	Nr.	Knoten	FHG	Wert	5. Randbedingungen
•	1	1	1	-277.7764	5. Belastungen stfall kopieren — 🗌 🕽
	2	16	1	-277.7835	7. Formoptimierung
	3	115	1	-555.5492	B. Löschen Anzahl max. zulässige Lastfälle: 20
	4	116	1	-555.5437	Anzahl Lastfälle: 20
	5	117	1	-555.5527	
	6	118	1	-555.551	Lastfall der kopiert werden soll: 1
	7	119	1	-555.551	
	8	120	1	-555.5509	neue Lastfälle von: 2 bis: 20
	9	121	1	-555.5509	
	10	122	1	-555.5509	🔿 Lastfall neu erzeugen
	11	8	1	312.4975	O Lastfälle addieren
	12	9	1	312.4975	
Akt	ueller Lastfall:	1 <	> Anzahl Lastfä	ille: 20	Jeder Lastfall um 20 Prozent höher als der Vorige
Anz	ahl Lasten/pro La	stfall: 19 Li	asttyp: 1	Knotenlast	Cancel Kopieren
	Neuer Lastfa	all erzeugen	Lastfälle	überlagem	
	Lastfall l	öschen	Lastfälle addie	eren und kopie	en and a second se
	Lastfall	Faktor	Temperatu	urlast einlesen	
		Vesterlast	Emilacitas	arade ändem	

Jetzt muß das FEM-Modell unter einem anderen Namen neu abgespeichert werden.

Nichtlineare Statik-Analyse für Stahl

Wählen Sie den FEM-Solver mit Register "FEM-Analyse" und "Material-Nichtlinear" und wählen mit "Select a Stress-Strain-Curve from the Database" die Spannungs-Dehnungs-Kurve" "**STEEL WROUGHT STAINLESS 501 BAR ANNEALED**" aus und starten die "START NONLINEAR FEM-ANALYSIS" die nichtlineare Analyse um die Verformungen und Spannungen iterativ zu berechnen.

	0 1	- (
U	Datei	Ansicht	Netzgener	ierung	FEM-Pr	rojekt	t bearbeite	n F	EM-Ana
	7. FE	Material-Nich M-Analyse	ntlinear 👻	FEM-Solve	er wähle Ablauf	n Fa	Infos zun Modell-A Infos St	n FEM-I Ibmessi rukturn	Modell ungen nodell 15
	Plastisch	ne Verformung	jen			-		×	1
	Material Lin No No No	Law: ear Elastic nlinear with Har nlinear with Har nlinear with Har	dening Isotrop dening Kinema dening Combir	atic ned					
	Sel	ect a Stress-Str	ain-Curve from	the Databas	e		Edit		
	Pl	ot Stress-Strain-	Curve	Plot St	ress-Disp	olacer	ment-Curve		
	Material	: STEEL WR	OUGHT STA	AINLESS 5	01 BAR	AN	NEALED		
	CA	ANCEL	ST	ART NONLI	NEAR FE	EM-AI	NALYSIS		

Stress-Strain-Datenbank die mit Notepad beliebig erweitert werden kann:

Sys	tem_MEANS_V11 > Stress-Strain-Database	✓ [™] Stress-S	itrain-Database" durc 🔎
			III 🕶 🔟 📀
^	Name	Änderungsdatum	Typ Gr
	ALUMINUM PURE 99.996 ANNEALED	02.04.2015 09:44	Textdokument
	STEEL NORMAL	31.03.2015 11:23	Textdokument
	STEEL S355	01.04.2015 09:41	Textdokument
	STEEL WROUGHT STAINLESS 201 SHEET	02.04.2015 09:41	Textdokument
	📄 STEEL WROUGHT STAINLESS 501 BAR A	07.04.2015 11:11	Textdokument
	Stress-Strain-Diagram_16MnCrS5 (similar	01.06.2015 10:46	Textdokument
	Stress-Strain-Diagram_C45	31.05.2015 21:56	Textdokument

Spannungs-Dehnungs-Diagramm STEEL WROUGHT STAINLESS 501

Postprocessing

Nach der FEM-Analyse wählen Sie das Register "Ergebnisauswertung" und das Menü "Diagramm" um die Verformungen und Spannungen für einen bestimmten Knoten für alle Lastfälle übersichtlich aufzulisten.

010-			
Datei Ansicht Netzge	enerierung FEM-Proje	ekt bearbeiten	FEM-
Ergebnisse darstellen	Verformungsfaktor Knotenwerte picken Skalieren/Anzeigen 🏹	Legende 1 Legende 1 Legende 2	elle 🕞
		Legende 3 Tabelle listen Diagramme	

Geben Sie den Lastfallbereich ein sowie Knoten 114 für die Verformungen und den Knoten 2364 für die Spannungen und wählen "Starten". Nach der Auflistung wählen Sie "Stress-Displacement-Diagram" oder "Stress-Load-Diagram".

Stress	-Displacement-Dia	gram						
Anzah	I Lastfälle = 20	Knoten fi Knoten fi	ür Verformungen = ür Spannungen =	114 ~ 2364 ~	in X → Mises →	FEM-File: Result-File:	C:\projekte\zugven C:\projekte\zugven	such\qua2.fem such\qua2.FRD
LF	Knoten	X-Verformung	Y-Verformung	Z-Verfor	mung	Knoten	Spannung	Last FX
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	114 114	0.04404 0.07963 0.15763 0.28657 0.48068 0.75515 1.13250 1.64509 2.33308 3.24294 4.44930 4.93158 5.29819 5.67714 6.07950 6.50883 7.67638 9.23725 9.37998 9.47485	0.00 0.00	0.00 0.00		2364 2364 2364 2364 2364 2364 2364 2364	166.65 200.29 234.33 269.07 304.98 342.46 382.24 425.45 474.18 528.96 553.14 613.71 632.02 650.87 670.46 650.87 670.46 650.87 745.37 807.74 811.77 815.52	4999.96 5999.95 6999.94 8999.93 9999.92 10999.91 12999.91 12999.90 13999.89 14999.88 15999.87 15999.87 15999.87 15999.87 1999.85 19999.84 20999.84 20999.84 21999.83 22999.82 23999.81
Ferti	g, die Diagramme kön	nen nun dargestellt w	erden!					Gesamt: 289997.8
	Cancel	Starten	Stop		Value-Anim	ation	Load-Displacem	ent-Diagram

Im Diagramm kann jetzt abgelesen werden bei welcher Zugkraft **ungefähr** die Streckgrenze und Zugfestigkeit sowie die maximale X-Verformung liegen. Die Ergebnisse aus einem Zugkraftversuch stimmen auch relativ gut mit MEANS V11 überein: <u>https://www.lehrerfreund.de/technik/1s/werkstoffpruefung-1-zugversuch/3826</u>

230

 Image: Second Second

Lastfall 1: Zugkraft = 5000 N, max. X-Verformung = 0.044 mm, v.Mises = 167 MPa

Lastfall 8: Zugkraft = 12 000 N, max. X-Verformung = 1.64 mm, v.Mises = 425 MPa

Lastfall 15: Zugkraft = 19 000 N, max. X-Verformung = 6.07 mm, v.Mises = 670 MPa

Lastfall 20: Zugkraft = 24 000 N, max. X-Verformung = 9.47 mm, v.Mises = 815 MPa

Nichtlineare Statik-Analyse für Aluminium

Es folgt mit der gleichen Zugprobe eine nichtlineare Analyse mit Aluminium um auch für diesen Werkstoff die Zugkraft für die Streckgrenze und Zugfestigkeit zu berechnen.

Materialdaten eingeben

Als erstes müssen die Materialdaten von Stahl auf Aluminium umgestellt werden. Wählen Sie Register "FEM-Projekt bearbeiten" und "Materialdaten" um das E-Modul von 71 000 MPa und die Poisson-Zahl von 0.34 einzugeben.

🖳 Ec	lit Material Datas			- [×
	Name	Material Datas				
•	H1	3				
	H2	3				
	H3	3				
	Youngs modulus	71000				
	Poisson Ratio	.34				
	Density	2.7E-06				
	Heat Coefficient	2.38E-05				
Elen	nent Group: 1	Element TRI	6S	<	>	
	 Isotrop 	🔘 Anisotr	op			
	Material Data Bas	e		ОК		
	Copy Material Dat	a				

Lastbereich auf Aluminium umstellen

Die Streckgrenze von Alu ist wesentlich kleiner als die von Stahl, darum muß jetzt der Lastbereich entsprechend verkleinert werden. Wählen Sie Register "FEM-Projekt bearbeiten" und "Belastungen" und dividieren Lastfall 1 mit einem Lastfall-Faktor 12. Dannach kopieren Sie wieder Lastfall 1 auf Lastfall 2 bis 20 mit der Option "Jeder Lastfall um 20% höher als der Vorige".

en e	dit Loads			—	×			
	Nr.	Node	FHG	Value	^			
•	1	1	1	-23.14803				
	2	16	1	-23.14863		🖳 Edit Load Case	- 🗆	\times
	3	115	1	-46.29576				
	4	116	1	-46.2953		Actual Load Case: 1	~ < >	
	5	117	1	-46.29606				
	6	118	1	-46.29593		Factor: 12		
	7	119	1	-46.29593		0.000	0.1.1	
	8	120	1	-46.29591	1	O multiply	divide	
	9	121	1	-46.29591	1	() add	 replace 	
	10	122	1	-46.29591	1			
	11	8	1	26.04145	1	CANCEL	OK	
	12	9	1	26.04145	Ļ			
Load Numł	Case: 1	se: 19 Load	 Load Cases: Type: 1 	30 Point Load				
	New Load Ca	ise	Combine	Load Cases				
	Delete Load C	ase	Copy L	oad Case				
	Load Factor	r	Convert Tempera	ture to a Load Case				~
	Pressure->Point	Load	Chan	ige FHG			<u> </u>	
		ОК						

FEM-Solver starten

Wählen Sie den FEM-Solver mit Register "FEM-Analyse" und "Material-Nichtlinear" und wählen diesmal aus der Stress-Strain-Datenbank das Spannungs-Dehnungs-Diagramm "ALUMINIUM PURE 99.996 ANNEALED" aus.

-System_MEANS_V11 > Stress-Strain-Database v 👌 "Stress-Strain-Database" durc				
			EE 🕶 🔟 (
^	Name	Änderungsdatum	Typ Gr	
	ALUMINUM PURE 99.996 ANNEALED	02.04.2015 09:44	Textdokument	
	STEEL NORMAL	31.03.2015 11:23	Textdokument	
	STEEL S355	01.04.2015 09:41	Textdokument	
	STEEL WROUGHT STAINLESS 201 SHEET	02.04.2015 09:41	Textdokument	
	STEEL WROUGHT STAINLESS 501 BAR A	07.04.2015 11:11	Textdokument	
	📄 Stress-Strain-Diagram_16MnCrS5 (similar	01.06.2015 10:46	Textdokument	
	Stress-Strain-Diagram_C45	31.05.2015 21:56	Textdokument	

ALUMINIUM PURE 99.996 ANNEALED ist ein weichgeglühtes und reines Aluminium mit einer Streckgrenze von nur R_e = 20 MPa und einer Zugfestigkeit von R_m = 60 MPa

.

Wählen Sie "Nonlinear with Hardening Combined" sowie "START NONLINEAR FEM-ANALYSIS" um die Verformungen und Spannungen iterativ zu berechnen.

👷 Plastische Verformungen	—		×						
Material Law: O Linear Elastic O Nonlinear with Hardening Isotrop									
 Nonlinear with Hardening Kinematic Nonlinear with Hardening Combined 									
Select a Stress-Strain-Curve from the Database	•	Edit							
Plot Stress-Strain-Curve Plot Str	ress-Displacen	nent-Curve							
Material: ALUMINUM PURE 99.996 ANNEALED									
CANCEL START NONLIN	IEAR FEM-AN	IALYSIS							

Postprocessing

Nach der FEM-Analyse wählen Sie das Register "Ergebnisauswertung" und das Menü "Diagramm" um die Verformungen und Spannungen für einen bestimmten Knoten für alle Lastfälle übersichtlich aufzulisten.

Datei Ansicht Netzge	enerierung FEM-Proje	ekt bearbeiten	FEM-
Ergebnisse darstellen Ergebnisauswertung	Verformungsfaktor Knotenwerte picken Skalieren/Anzeigen 🕞	Legende 1 Legende 1	elle 🕞
		Legende 3 Tabelle listen Diagramme	

Geben Sie den Lastfallbereich ein sowie Knoten 114 für die Verformungen und den Knoten 13 für die Spannungen und wählen "Starten". Nach der Auflistung wählen Sie "Stress-Displacement-Diagram" oder "Stress-Load-Diagram" um die Zugkraft bei der Streckgrenze und Zugfestigkeit abzulesen.

Spannungs-Verformungs-Diagramm:

Im Diagramm kann jetzt abgelesen werden daß die Zugkraft bei der Streckgrenze bei ca. 475 N und die Zugkraft bei der Zugfestigkei bei ca. 1416 N liegt. Die max. Zugkraft liegt bei ca. 2600 N und die max. X-Verformung liegt bei ca. 0.63 mm.