FEM-System *MEANS V12*

FEM-Berechnung eines Kranhakens als Einzelteil und als Baugruppe

Kranhaken mit **MEANS-LITE** Kranhaken-Baugruppe mit MALILL. **MEANS HIGH-END** THURLING Haken 15 KN 9.90 N/mm² MPC-Kontaktelemente Bolt 15 KN

(C) 2020 by Ing.Büro HTA-Software Germany-Rheinau

> <u>www.femcad.de</u> <u>www.fem-infos.com</u>

Kapitel 18: Kranhaken mit MEANS-LITE und Kranhaken-Baugruppe mit MEANS HIGH-END

Kranhaken-Einzelteil: Der Kranhaken wird als Einzelteil mit einer Knotenbelastung von 15 KN belastet. Das FEM-Modell besteht aus ca. 99 214 Tetraeder-Elementen und kann somit mit der kostengünstigen Einstiegsversion **MEANS-LITE** das auf max. 100 000 Elemente und Knoten begrenzt ist, berechnet werden.

Werkstoffkennwerte:

Der Kranhaken ist aus dem gehärteten Vergütungsstahl 42CrMo4 mit folgenden Werstoffkennwerten gefertigt, die auch im Programm voreingestellt sind:

Zugfestigkeit R_m = 1100 MPa E-Modul E = 210 000 MPa Streckgrenze Re = 900 MPa Poisson-Zahl = 0.3 Kranhaken-Baugruppe: Die Baugruppe besteht aus Haken und Bolt und wird mit einer Gewichts-Flächenlast am Bolt-Ende mit 15 KN belastet. Die Baugruppe wird mit einer Kontaktanalyse berechnet und besteht aus ca. 130 000 TET4-Elementen und ca. 450 MPC-Elementen und kann entweder mit MEANS-DESIGN bis 200 000 Elementen oder mit MEANS HIGH-END bis ca. 10 Mill. Elementen und Zusatzmodul CONTACT berechnet werden.

Kranhaken mit MEANS-LITE

Es wird zuerst aus dem Kranhaken-CAD-Modell ein FEM-Netz mit ca. 99000 Tetraeder-Elementen generiert und über die Export-Schnittstelle in die kostengünstige Einstiegsversion MEANS-LITE das bis 150 000 Elementen und Knoten begrenzt ist, eingeladen.

🖶 Fem	-Syste	m MEA	NS V11	für DirectX11						
A	0	& () =							
U	Dat	ei	Ansicht	t Netzgen	erierung FEM	-Projekt bearbeiter	FEM-An	alyse Er	gebnisauswertung Training	
					Zuladen Vereinen	Importieren Exportieren	MEANS- SHELL		1. C:\projekte\kugelventil\Kugelventil.fem +	
Neu	I G	Einla	den 🕞	Sichern 🕞	Baugruppen 🕞	Schnittstelle 🖓	Extern 🖓	Pfade 🕞	Zuletzt geöffnete FEM-Projekte 🕞	

Wählen Sie die Registerkarte "Datei" und wählen "Neu" um ein neues FEM-Projekt zu erstellen.

🖳 Neues Projekt	_ 1		\times
 3D-Tetraeder-Netzgenerierung Neues FEM-Projekt mit Balken 	(STL, STE -Linien-Mod	EP, IGES) dus erstel	len
🔿 Neues FEM-Projekt mit Behälte	er <mark>-Netzgen</mark> e	erator	
🔿 Neues FEM-Projekt mit Wälzlag	ger-Netzge	nerator	
NEUES PROJE	EKT		

Wählen Sie "3D-Tetraeder-Netzgenerierung (STL, STEP, IGES) für folgende Formate:

- **STL** das 3D-Modell besteht aus einer Dreiecks-Außenhülle für die 3D-Netzgenerierung, dieses Format kann auch mit MEANS importiert und exportiert werden. Vor der Netzgenerierung kann es auch mit Repair-Funktionen optimiert werden.
- **STEP** das 3D-Modell besteht aus Solid-Volumenelementen und ist heute das Standard-Format, beachten Sie daß keine Baugruppen sondern nur einzelne Parts vernetzt werden können. Baugruppen können aber mit fast jedem 3D-CAD-System über die "Boolschen Operationen" oder "abgeleitete Komponenten" zu einem Part vereint werden.
- **IGES** wie STEP-Format aber ist nicht mehr so verbreitet

Selektieren Sie mit dem Button "Browser" die STEP-Datei "hook.step" und klicken auf "Netzgenerator Nr. 2 mit CAD-File starten" um es im Netzgenerator darzustellen.

🛃 3D-Ne	tzgenerator			_		Х
Directory:	C:\projekte\crane	hook			Browser	
	STEP				Default	
٢	JILI	Oldes	O STEP AST (ASCIT)		Help	
bolt.step						
Hook_step	e_bolt_assembly.S1	ΈP				
STL-Opt	imierer 1. Datei verber entir	nieren laesen (ematelale	a a D. hai Abatum in NGSalu	-		
	mit allen Tests	nieren lassen (empronie	n z.b. del Adsturz in NG Solv	e)		
2D Nete						
3D-Netz	generator INr. 2 mit	STE-/STEP-/IGES-File	starten			
Net	zgenerator Nr. 2 mit	CAD-File starten	mit Fehleranzeige/Recent	File	Hinweis	
- 3D-Netz	generator Nr. 3 mit	STL-File starten				
	Netzgenerator N	r. 3 starten	Netzdichte: 0	~	Hinweis	
		Cano	cel			

Das Modell ist jetzt im Netzgenerator zu sehen und kann beliebig gedreht werden.

Wählen Sie zuerst das Menü "Mesh" und das Register "General" und wählen die Netzdichte "fine" aus.

Mesh-Size-Grading

Dannach wählen Sie das Register "Mesh Size" und generieren mit dem Parameter **mesh-size-grading = 0.225** und Hauptmenü "Generate Mesh" ein FEM-Netz mit 99214 Tetraeder-Elementen sodaß die Anzahl der Elemente unter der MEANS-Lite-Grenze von 150 000 Elementen liegt.

Netz exportieren

Nach der Netzgenerierung muß das FEM-Netz mit Namen "test.fem" nach MEANS V11 exportiert werden. Wählen Sie das Menü "File" und "Export Mesh" und speichern das Netz "test.fem" in den vorgegeben Debug-Mesh-Pfad.

76 NETGEN - D:/Program Files/FEM	-System_ME
File Geometry Mesh View R	efinement
Load Geometry <i><g> Save Geometry Recent Files</g></i>	
Load Mesh <i><m> Recent Meshes Save Mesh <s><m></m></s></m></i>	
Merge Mesh Import Mesh Export Mesh Export Filetype	hier mit Namen test.fem das generierte Netz in das Debug/Mesh-Verzeichnis abspeichern

Flächenmodell erzeugen

Nach dem Export von "test.fem" wird MEANS V12 automatisch gestartet und erzeugt zuerst das Flächemodell damit Flächen, Kanten und Knotenpunkte für Belastungen, Randbedingungen oder Elementgruppen selektiert werden können.

🛃 Hidden-Line				\times
🔿 wenig Flächen	 normal 	🔿 viele	🔿 sehr v	iele
Flächeneinte	eilung= 0.91	Hinweis]	
	🔘 gesamt mit	V8 O mit	Modellbereid	ch
Cancel	Neues Fläch	enmodell erzeuge	n	

Kranhaken einspannen

Der Kranhaken ist oben fest eingespannt. Wählen Sie dazu das Register "FEM-Projekt bearbeiten" und "Randbedingungen".

Wählen Sie die Selektion "Flächenliste" und den Button "RBs erzeugen" und klicken auf die Fläche 6 um diese in der Selectbox anzuzeigen. Dort wird mit "Erzeugen" die Einspannung erzeugt.

Ansich	t Netzgenerie	rung FEM-Proj	ekt bearbeiten	FEM-Analyse	Ergebnisauswertung	Training	
1. Knoter ☑ Belastu	nbelastung 🔹	Randbedingunger	1. Randbed	dingungen 🔹 ingungen darstellen lächen-Modus aktivi	Elementgruppen ert - Fläche= 6	Materialdaten	Edit
 Knoter Belastu Belastu Anzał Wert u Freihe (Ach Sele I G I Ranu Car 	ngen darstellen Ibedingungen Ibedingungen I Randbedingungen der Randbedingung: itsgrad sperren: sen-Farben: SCHWAR ctieren Flächenmodus einzelne Knoten ankl Koordinatenbereich o dbedingungen darste	aktuell: 99 1E-10 in X-Richtung in Y-Richtung in Y-Richtung Z: X-Achse; BLAU: Y-Ac O Rech licken alle a definieren alle a ellen: .00034	1. Randbedi ✓ Randbedi ✓ Randbedi Image: State of the	dingungen ingungen darstellen lächen-Modus aktivi	Elementgruppen ert - Fläche= 6	Materialdaten	Edit
	- DEL CLE CLE ED Knoten I Fläche Bemente Kante	X ETE AR DIT en n GEN					

Knotenlast erzeugen

Der Haken wird mit 15 KN in Y-Richtung belastet. Zuerst muß ein selektierbarer Knotenbereich im Knoten-Modus erzeugt werden indem ein Rechteck über der Belastung aufgespannt wird. Jetzt wird das Modell noch so gedreht und gezoomt damit der Knotenpunkt nicht verdeckt wird und angeklickt werden kann.

			-	Flächen Knoten Linien
🖷 Knotenbereich erzeugen	-		×	Anzahl Eckknoten = 141363
Bitte mit der Maus ein Rechteck aufspannen oder einzelne	er Knoten anklicke	n!		Kanten Von: 1 bis: 93
Anzani Knotenbereich = 0	Neu			Knoten anzeigen
Knotenbereich aus Knotenbereich erzeugen	Help			Knotenbereich erzeugen Knotenbereich erzeugen
Selection			_	Flächenknoten
Rechteck aufspannen O Knoten picken	O Koordinatent	pereich		Flächen-Randknoten
				Knotenbereich löschen
				Knotenbereich loschen
		_		Knotenbereich ändern
Cancel Knotenber	reich erzeugen			Koordinaten-Faktor
			_/	Knoten: 100112 EDIT
				X: 2.150728
				Y: -15.56149
				Z: -1.831187
				Knoten numerieren
			2000.00	Elemente numerieren
				Elementgruppen numerieren
				Lastwerte anzeigen N
				Kashar Cara di anti
				whoten-bize editieren:
				Größe= .01
				Size= normal \checkmark
		1		

Jetzt kann mit Register "FEM-Projekt bearbeiten" und "Knotenbelastung" der Knoten 329 mit einer Belastung von -15000 N in Y-Richtung angeklickt werden.

	Ansicht Netzgenerierung	FEM-Projekt bearbeiten FEM-Analyse Ergebnisauswertung Training
1.	Knotenbelastung	1. Randbedingungen -
1.	Knotenbelastung	ndbedingungen 🗹 Randbedingungen darstellen Elementgruppen Materialdaten Editor Tempe
2.	Linienbelastung	aktueller Knoten 329: X-Koord.= 1.305765; Y-Koord.=-15.44374; Z-Koord.= 0
3.	Flächenbelastung	
4.	Gravitationsbelastung	•
5.	Fliehkraftbelastung	
6.	Temperaturbelastung	
7.	Ungleichmäßige Radiallast	
8.	Lastfall einstellen	🖫 Knotenlast erzeugen — 🗆 🗙
9.	Editor	
		Aktueller Lastfall: 1 - + Anzahl Lastwerte: 1 Neu Wert der Knotenlast: -15000 (Einheit z.B. in N)
		Freiheitsgrad: O X-Richtung O Z-Richtung © Y-Richtung
		O Rächenmodus O Rechteck aufspannen
		O Koordinatenbereich definieren Iste angezeigten Forder
		Knotenlasten darstellen: 0004 normal V
		Cancel Editor Belastung erzeugen
		Belastung löschen

Modell skalieren

Damit der Haken mit einem anderen FEM-Modell vergleichbar ist, sollten die Knoten-Koordinaten mit dem Faktor 0.25 multipliziert werden.

Wählen Sie das Register "FEM-Projekt bearbeiten" und "Knotenkoordinaten" und multiplizieren die Koordinaten mit einem Koordinatenfaktor von "0.25". Die anschließende Knoten-Überprüfung kann muß aber nicht durchgeführt werden.

edingungen 🗹 R	Randbedingungen andbedingungen dar Knoten- m	stellen Element	gruppen Materialdate	n Editor	3. Knotenkoordinaten 1. Elementgruppen 2. Elementknoten 3. Knotenkoordinaten 4. Materialdaten	Temperatur
Nr.	X-Koordinaten	Y-Koordinaten	Z-Koordinaten	\	5. Randbedingungen	🖳 Koordinaten-Eaktor — 🗆 🗙
1	0	380	26		6. Belastungen	
2	0	380	-26		7. Formoptimierung	Faktor setzen :
3	0	210	26		8. Löschen	multiplizieren dividieren
4	0	210	-26			🔿 addieren 🔷 ersetzen
5	0	210	37.5			
6	0	210	-37.5	र⊺ में के	111111	Achsen vertauschen
7	0	190	37.5			X-Werte mit Y-Werte vertauschen
8	0	190	-37.5	1	1 T T T	X-Werte mit Z-Werte vertauschen
9	30	190	0			Y-Werte mit Z-Werte vertauschen
10	-30	190	0			
11	-172.0235	67.26359	0			Koordinaten mit Faktor verändem
12	-163.2311	75.78242	-14.43947			🗹 X-Koordinaten 🔽 Y-Koordinaten 🔽 Z-Koordinaten
13	-151	87.63221	0			
14	-163.231	75.78242	14.43947			nur die angezeigten Knoten im Knotenmodus verwenden
15	-159.8983	90.6013	0			von Knotenpunkt
16	9.949769	380	24.02087			
17	18.67128	380	18.09373			bis Knotenpunkt: 20123
18	24.02087	380	9.949769			Koordinatenfaktor: 0.25
19	25.99884	380	245041			
		Koordinato	n Faktor			Nullpunktsverschiebung durch Knotenpunkt: 1
		Noordinate	IT AKO			Koordinaten mit Faktor verändem
						Verformungen mit Faktor zu den Koordinaten addieren: Verformungs-Faktor: 1 CANCEL

Postprocessing

Nach der FEM-Analyse mit Register "FEM-Analyse" können die Knotenspannungen mit Register "Ergebnisauswertung" ausgewertet werden.

Postprocessing		-		>
Ergebnisse einladen				
O Verformungen auswerten	Lastfall:	1 ~		
 Knotenspannungen gemittelt 	🔘 Auflager	kräfte auswei	rten	
O Elementspannungen ungemittelt	C Ergebnis	sdatei anzeige	en	
Legende				
Raster-Genauigkeit:	Verformungs	faktor/Werte	bereich	
	Legende ur	nd Farben ein	stellen	
1 3 4	Knotenwerte p	icken, suche	n, sichem	
Ergebnis-Komponente wählen v.Mises-Vergleichsspannung			~	
v. <u>Mises-Vergleichsspannung</u> Nomalspannung Sigma x Nomalspannung Sigma y Nomalspannung Sigma z Schubspannung Tau xy				
Schubspannung Tau yz Schubspannung Tau zx Maximale Hauptspannung S1 Mittlere Hauptspannung S2 Minimale Hauptspannung S3				

Die max. Vergleichsspannung beträgt 637.17 N/mm².

Kranhaken-Baugruppe verbinden

Die Kranhaken-Baugruppe besteht aus dem vorigen Haken und Bolt, letzterer wird mit "fine" und mit 26 254 Tetraeder nachträglich vernetzt und als Bolt.FEM abgespeichert.

FEM-Zuladung

Es werden jetzt mit einer FEM-Zuladung folgende zwei FEM-Netze zusammengefügt:

Netz1: Haken.FEM mit 21 948 Knoten und 99 214 Tetraeder-Elemente

Netz 2: Bolt.FEM mit 6100 Knoten und 26254 Tetraeder-Elemente

Laden Sie zuerst das größere FEM-Modell Haken.FEM in MEANS V12 ein, dannach fügen Sie mit Register "Datei" und "FEM-Zuladung" das zweite Netz hinzu.

U	Datei	Ansicht	Netzger	erierung FEM	-Projekt bearbei	ten FEM-	Analyse
				FEM-Zuladung MPC-Kontakte	Import: STL Export: DXF	MEANS- SHELL	
Neu	rg Ei	nladen 🕞	Sichern 🕞	Vereinen	CAD	Extern	Pfade 15

Haken und Bolt werden jetzt zu einer FEM-Modell zusammengefügt, leider aber berühren sich die beiden Bauteile nicht, darum muß der Bolt um -6.5 mm ohne Skalierung bzw. -1.62 mm mit Skalierung in Y-Richtung verschoben werden.

Stellen Sie mit Register "Ansicht" und "Knoten-Modus" das Knoten-Modus-Menü ein und zeigen alle Knotenpunkte der Elementgruppe 1

Wählen Sie "Koordinaten-Faktor" und addieren die Y-Koordinaten der angezeigten Knoten mit einem Koordinatenfaktor von "-6.5" mm.

MPC-Kontakte

Die beiden Bauteile sind jetzt zwar in einer FEM-Datei vereint aber Sie müssen auch an der Berührungsstelle über MPC-Elemente (MPC-Elemente werden ausführlich im Handbuch Kapitel 10 - MPC-Analyse mit MEANS V12 behandelt) verbunden werden.

Spannen Sie mit Register "Ansicht" und "Knoten-Modus" sowie "Knotenbereich erzeugen" ein Rechteck über den beiden Kontaktflächen auf.

Beenden Sie mit einem Doppelklick das Aufspannen des blauen Markierungsrechtecks um alle Knoten in diesem Bereich anzuzeigen.

Knotenbereich erzeugen	-		×		
Bitte mit der Maus ein Rechteck aufspannen oder einzelne	er Knoten anklick	en!			
Anzahl Knotenbereich = 0	Neu				
Knotenbereich aus Knotenbereich erzeugen	Help				
Selection					
Rechteck aufspannen O Knoten picken	Koordinater	nbereich		1000	
				NOR.	
Cancel Knotenber	eich erzeugen			180015	
			7		

Dannach wählen Sie das Register "Datei" und "MPC-Kontakte" und starten die Kontaktberechnung um 297 MPC-Elemente automatisch mit obigen Knotenbereich zu erzeugen.

FEM-System MEANS V11 - Strukturdatei C:\projekte\crane hook\hookbolt2.fem						
Datei Ansicht Netzgenerierung FEM-	Projekt bearbeiten	FEM-Analyse	Ergebnisauswertung) Trainin	9	
FEM-Zuladung MPC-Kontakte	Import: STL + Export: DXF +	MEANS- SHELL	1. C:\projekte\c	rane hook\ho	ookbolt2.fem	
Neu 😰 Einladen 😨 Sichern 😨 Vereinen	CAD	Extern Pfade	2 12	Zuletzt geöffr	nete FEM-Pro	
🖳 MPC-Elemente			-	- 🗆	×	
FEM-Modell hat 118979 Elementen und 297 MPCs	MPC-	Elemente löschen				
Kontaktberechnung starten	Schritt 1	O Ko	ntakt automatisch berechne	en		
Kontaktberechnung anhalten und anzeigen		() Ein	gabe von 2 Kontaktflächen			
Anzahl Kontakte = 336		 Eir 	gabe eines Knotenbereiche	s		
Knotenbereich A im Knoten-Modus anzeigen	Schritt 2					
Bereich A mit gelöschten oder hinzugefügten Knoten übernehmen		max K	ontakt-Winkel: 4.2			
Knotenbereich A: 77		Kostak		1	5	
Knotenbereich B im Knoten-Modus anzeigen	Schritt 3	Nonitak			5	
Bereich B mit gelöschten oder hinzugefügten Knoten übernehmen		zulässi	ge MPC-Länge: 8.49237	8		
Knotenbereich B: 26	_					
	_	Fläche	A: 1			
Kontakt-Knoten sichem Kontakt-Knoten einladen	Schritt 4	Fläche	B: 2			
MPC-Elemente erzeugen	Schritt 5					
MPC-Elemente prüfen MPC-Elemente löschen						
Lab.		Cancel				
hep		Cancel				

Haken Einspannung

Der Haken ist oben fest eingespannt, wählen Sie Register "FEM-Projekt bearbeiten" und "Randbedingungen" um die Fläche 12 in X-, Y- und Z-Richtung einzuspannen.

Bolt-Ende mit Flächenlast belasten

Der Bolt ist am Ende in Y-Richtung mit -15 KN bzw. -15 000 N belastet. Wählen Sie Register "FEM-Projekt bearbeiten" und "Flächenbelastung" um die Fläche 6 mit -15000 N senkrecht zur Fläche zu belasten.

Anmerkung: Die Flächenlast kann entweder in N/mm² oder in N eingegeben werden, beim letzteren wird erst zum Schluß die Fläche aus den selektierten Flächen automatisch ermittelt und auf einen N/mm²-Lastwert umgerechnet.

Flächenlast (N/mm²) =	Knoten-Belastung (N)				
	Fläche (mm²)				
FEM-System MEANS V11 - Strukturdatei C:\projekte\crane hook\ho	okbolt2.fem				
Datei Ansicht Netzgenerierung FEM-Projekt be	arbeiten FEM-Analyse Ergebnisauswertung Training				
Image: Belastungen 3. Flächenbelastung Image: Delastungen 1. Belastungen Image: Delastungen Image: Delastungen Image: Delastungen	Randbedingungen Randbedingungen darstellen Elementgruppen Elächen-Moduc aktiviert - Elächen 6				
Sufface 6 DELETE CLEAR EDIT Monten Elemente Kanten	Flächenlast erzeugen – L X				
	Aktueller Lastfall: 1 • + Anzahl Lastwerte: 0 Neu Wert der Flächenlast: 0 0 N/mm ² (oder in N				
	Wert Belastung in N: -15000 Info Freiheitsgrad: O X-Richtung O Z-Richtung O Y-Richtung O senkrecht zur Fläche Selektion:				
	Flächenmodus Rechteck aufspannen einzelne Knoten anklicken alle angezeigten Knoten Koordinatenbereich definieren alle angezeigten Surfaces				
Flächenlast-Wert (N/mm ²) aus Belastung (N) b					
	Cancel Editor Belastung erzeugen Belastung löschen				

Postprocessing

Nach der FEM-Analyse mit Register "FEM-Analyse" und dem Quick-Solver werden die Knotenspannungen ausgewertet.

Die max. v.Mises-Vergleichsspannung der Baugruppe beträgt 644 N/mm² und stimmt mit der v.Mises-Vergleichsspannung des Einzelteils mit 637 N/mm² fast genau überein.

Bolt-Auswertung

Wählen Sie "FEM-Projekt bearbeiten" sowie "Elementgruppen" und blenden nur die Elementgruppe 1 ein. Wechseln Sie wieder ins Postprocessing um die maximale Hauptspannung S1 und die minimale Haupstspannung S3 darzustellen.

